Fluidized Bed Combustion

Although it's a method typically used in large power plants, individual inventors like the author were conducting successful experiments with efficient small scale fluidized bed combustion in the 1970s.

| September/October 1980

The actions taken—by big government and big industry—to "solve" our energy problems are often befuddling at best and dangerous at worst. Can you, for example, imagine any acceptable rationale that a utility planner could offer to justify the last decade's shift toward grossly inefficient all-electric homes? Or, if that one doesn't leave you baffled, try to understand why our President wants to spend a large part of $66,000,000,000 (as well as a great deal of energy) converting an already useful—if dirty, in some applications—solid fuel (coal) into a gas (methane or hydrogen) ... and then to persist in the folly by transforming the gases into liquid fuel (methanol, to name one). 

Indeed, it's easy (and even necessary) to view the capricious wanderings of our nation's high technologists with a measure of cynicism ... after all, their efforts aren't known for consistently producing social benefits. However, some folks have chosen to take a more valuable approach to the often misguided (but well-meaning) ramblings of science. And recently, it was MOTHER EARTH NEWS' good fortune to meet just such an individual ... a young man named James "Rocky" Golden, who—along with his colleagues of the Mobile Steam. Society of Oak Ridge, Tennessee—has taken a highfalutin academic notion called "fluidized bed combustion" and turned it into a practical-on-a-small-scale reality!—THE EDITORS. 

Though fluidized bed combustion was conceived in the 1920's (separately, but almost simultaneously, by Fritz Winkler of Germany and W.W. Odell of the United States), scientists around the world didn't begin to develop the technique (for use in industrial applications requiring great amounts of heat) until the late 1960's. Much of the pioneering work was done in England, under the auspices of that country's National Coal Board. And, more recently, China has made so many technological advances in the design of mid-sized units that the energy-poor nation now employs over 2,000 fluid beds to generate steam (for electrical production) from high-ash coal!

However, until last year the world engineering community didn't consider this efficient combustion method to be feasible for small applications. As a result, funding for research aimed at scaling down fluid beds has been (and still is) lacking, so such work has been left to the hands (and bank accounts) of interested individuals. And one of the earliest of such independent proponents of small fluid beds was W.H. Fleischman, who began building cardboard models and delivering lectures back in 1976.

Fleischman and I were introduced through the Mobile Steam Society—a group of lunatic fringe scientists and engineers bent on using their spare time to develop a modern steam automobile—and, with his help, I built a six-inch-diameter prototype fluid bed capable of burning up to 90,000 BTU worth of coal per hour with respectable efficiency. [EDITOR'S NOTE: Before Rocky built his, "small" fluid beds had been those sized around six feet in diameter!] 

Then, at the May 1980 meeting of the Steam Automobile Club of America in Greensboro, North Carolina, MOTHER EARTH NEW' staff got wind of the fluid bed's potential. At that get-together the furnace was fed a variety of fuels ... including not only coal, but also kerosene and even chicken feed. (Though it's quite natural for folks who are unfamiliar with fluid bed combustion to be surprised by the device's multi-fuel capability, it's easy—once one understands how the little burner works—to see why it's capable of very efficiently firing almost any material that contains carbon!)

mother earth news fair 2018 schedule


Next: April 28-29, 2018
Asheville, NC

Whether you want to learn how to grow and raise your own food, build your own root cellar, or create a green dream home, come out and learn everything you need to know — and then some!