The Search for Energy Self-Sufficiency

Fed up with the noise, fumes, and cost of their gas-powered generator, a California family in California's Tehachapi mountains achieved energy self-sufficiency with a wind and solar power system.

| October/November 1994

After two years of powering our remote home on a small generator, my husband John and I were desperate. We had to eliminate the noise, gasoline, oil changes, and fumes or finally admit that what was originally envisioned as a conscientious attempt at energy self-sufficiency was turning into a terrific nuisance. One morning after we stepped outside to get a soul full of fresh air and instead caught yet another mouthful of exhaust, we contacted a couple of wind turbine manufacturers for specifications and wind data. Their charts and graphs, spread out over the kitchen table, provided information about equipment operation and wind velocity. Financial resources dictated that we move slowly, but we were determined to get moving.

One year later, John and I enjoy a rural lifestyle in the Tehachapi mountains with modern conveniences ...and no fumes. We convert both wind and solar power to 110-V household current. We also have a backup generator — just in case Mother Nature takes a rest. Our primary electrical supply is generated by a 1.5-kW Bergey wind turbine, mounted on a 50-foot, old-fashioned, stock tank windmill. The turbine is a 24-hour renewable source and the solar panels complement the power system on sunny days. During winter, solar benefts are limited by shorter days, but the wind is present across our mountains.

Our refrigerator, heaters, and water heater run on propane gas. On household current (stored in batteries and transformed from 24-V DC power to 110-V AC for the house outlets through an inverter), we operate a color TV, VCR, computer, printer, washer, dryer, 1,500-W hair dryer, water well and water pressure pump, garage door opener, water filtration system, and outdoor lighting.

But how did we get there?

Our first consideration was the tower. Typically, turbine manufacturers design their mounting plates to conform to the tower top. For example, Bergey uses the Rohn guyed-lattice tower, whereas World Power uses a guyed-pole tower. What this means is that you are something of a captive audience, having to buy a turbine specifically made for certain towers. And they don't come cheap.

The giant steel frame must be a minimum of 50 feet tall to reach stable air and preferably taller to ensure unobstructed airflow. It's hoisted to an upright position and stabilized with numerous guy wires; the turbine is then lifted on top by a crane (only experienced folk dare use a gin pole). The rotor and tail are installed in place and final electrical connections are made. Now, all that's required is a 7.5-mph start-up wind.

mother earth news fair 2018 schedule


Next: April 28-29, 2018
Asheville, NC

Whether you want to learn how to grow and raise your own food, build your own root cellar, or create a green dream home, come out and learn everything you need to know — and then some!