The Potential of Community Solar Power

Although solar power satellite systems receive a lot of attention, research shows community solar power generation from earth-based collectors is more cost-effective.

| November/December 1981

Imagine a wafer-thin sheet of pure sand that's capable of converting sunlight directly into electricity and you can begin to appreciate the excitement—and, perhaps, a bit of the confusion—that's caused by each new development in the photovoltaic industry.

The phenomenon of solar-generated electricity has been investigated for decades, but the necessary cost has limited its use in the ordinary home. Recently, however, advances in the production of solar cells (the layers of silicon that convert sunlight into electricity) have dramatically dropped the prices of these "miniature powerplants," rapidly making the solar panels a more and more economically feasible alternative to conventional sources of electricity. In fact, according to sun-power experts Paul Maycock and Edward Stirewalt, "Photovoltaics will be fully economic for massive private use before a major utility can design, purchase, and install its next new nuclear reactor."

The comparison between solar cells and nuclear power is important in more than merely an economic context. Silicon cells consume nothing but sunlight while in operation, and—because they create no material by-products—they generate no pollution (although some is caused by their manufacture). Moreover, since photovoltaic systems can be used on an individual household or neighborhood scale, they're particularly suitable for community solar power projects aimed at providing a measure of local energy self-reliance.

Given such environmental and (assuming that technical advances will continue to lower the cost of solar cells) economic advantages, then, it would seem that locally operated photovoltaic facilities ought to begin to pop up all over within the next few years. Unfortunately, this may not be the case. The question of whether (and how) solar power can actually provide enough electricity to meet the nation's future energy needs has directed much of the research away from small-scale systems, in effect putting the reality of local energy-generating setups further out of reach.

The main drawback of the silicon cells, of course, is that they produce electricity only when the sun shines ... thus working at less than full capacity (about 50%) on cloudy days and not at all during the night. And in an attempt to solve the problem of inconsistent energy production, a great deal of research has been conducted on the solar power satellite (SPS) concept ... an energy-gathering system that involves launching satellites into orbit about the earth, where they'd be constantly exposed to the sun's radiation and thus could continuously relay energy to giant ground-based facilities. However, though the U.S. government has already spent well over $26 million merely investigating the SPS idea, recent findings indicate that such a system isn't feasible at this time.

According to Scott Denman, a member of the Citizens' Energy Project (an effective grassroots organization in Washington, D.C.), electricity produced by solar power satellites would bring with it a host of problems. Citing a study done by the Department of Energy and NASA, Denman stated that—for instance—an SPS system would cost over $1 trillion to set up ... its construction would tear up thousands of acres of land ... and the energy waves that the satellites relayed to earth would disrupt radio signals. Furthermore, the SPS design is such that the nation's entire utility network would be placed in a few hands rather than under the control of individuals in a community, as would be the case if "down to earth" systems were used. And finally, it's possible that—in the event of a war—a hostile foreign power might be able to knock some, or all, of the satellites out of service.

mother earth news fair 2018 schedule


Next: April 28-29, 2018
Asheville, NC

Whether you want to learn how to grow and raise your own food, build your own root cellar, or create a green dream home, come out and learn everything you need to know — and then some!