Permaculture Design: Part I

Design guidelines.


| July/August 1984



Permaculture Design Water Tanks

Photo 1. Water-filled, 550-gallon tanks constructed of fiberglass-reinforced polyester provide thermal mass.


PHOTO: ROBERT SARDINSKY

The primary characteristic that distinguishes permaculture systems from conventional agriculture is the emphasis on skilled design. The placement of elements in a landscape, their relationships to each other, their evolution over time, and the ability of the system as a whole to meet the realistic goals of its managers should all be taken into consideration.

The following permaculture design guidelines are derived from texts (some of which are listed in the Permaculture Design: Part II reading list) and from our understanding of ecological principles. As such, they represent a synthesis of scientific findings and common sense, combining proven practical ideas with experimental ones. These guidelines should assist your design process, influencing your management strategies and aiding in the selection of landscape components and their relative sizes and locations.

Zones and Sectors

In permaculture systems, landscape components are divided into zones and sectors to help produce an energy-efficient design. Zones separate the site according to labor needs: Frequently visited or labor intensive areas are situated close to the center of activity (which in most cases is the farmhouse), while those requiring less attention are placed farther away. For example, as shown in Fig. 1, annuals that are tended daily—such as herbs and vegetables—are located near the farmhouse ... whereas low-maintenance livestock and tree crops are situated in a more remote zone. This concept makes sense in terms of minimizing labor, and it helps ensure high yields: After all, distance invites neglect, while proximity encourages management.

In general, farm development follows the concept of zonation, as well. Distant areas are utilized only after the nearby land is put to productive use. Sector planning divides the landscape into wedge-shaped areas that radiate from a particular point (again, most often the farmhouse) or points. From any one such center, we identify some or all of the following sectors: views, both attractive and repulsive ... noises, some pleasant and others undesirable ... winds, warm in the summer and cold in winter ... sunshine, with its seasonal variations ... and fire risks.

For each sector, planting and building schemes are designed to block or channel these external inputs. Undesirable noise can be masked with earthen banks or dense bands of evergreen trees ... cold winter winds can be blocked with windbreaks ... fast-growing trees can screen ugly views ... and deciduous shrubs and trees planted to the south can provide summer shade while still allowing the warming winter sunlight to penetrate. Looking again at Fig. 1, you can see that the roadway, poultry run, and pond have been situated so that they assist in fire control in addition to fulfilling their primary functions. Blazes coming from the southern sector would have to cross the pond, the road, and the bare ground of the poultry run before reaching the house. Placing these three components in another relationship would mean the loss of this extra control function.

Relative Location

Within zones and sectors, farm components—orchards, the market garden, farm ponds, the farmhouse, the barn, the woodlot, and so forth—should be placed in relation to one another so as to conserve labor and energy. Each component is thus viewed relatively rather than in isolation.





mother earth news fair

MOTHER EARTH NEWS FAIR

Oct. 21-22, 2017
Topeka, KS.

More than 150 workshops, great deals from more than 200 exhibitors, off-stage demos, inspirational keynotes, and great food!

LEARN MORE