DIY Electricity Wind Turbine

Use a home built, DIY wind turbine on your property to create electricity from natural wind power.

By Instructables.com
September 2018

Do It Yourself Projects to Get You Off the Grid (Skyhorse Publishing, 2018) by Instructables.com is illustrated with dozens of full-color photographs per project accompanying easy-to-follow instructions. This Instructables collection utilizes the best that the online community has to offer, turning a far-reaching group of people into a mammoth database churning out ideas to make life better, easier, and, in this case, greener, as this volume exemplifies. Twenty Instructables illustrate just how simple it can be to make your own backyard chicken coop, or turn a wine barrel into a rainwater collector.

You can purchase this book from the Mother Earth News store: Do It Yourself Projects to Get You Off the Grid.



Several years ago I bought some remote property in Arizona. I am an astronomer and wanted a place to practice my hob­by far away from the terrible light pol­lution found near cities of any real size. I found a great piece of property. The problem is, it's so remote that there is no electrical service available. That's not really a problem. No electricity equals no light pollution. However, it would be nice to have at least a little electricity, since so much of life in the twenty-first century is dependent on it.

One thing I noticed right away about my property is that most of the time, the wind is blowing. Almost from the moment I bought it, I had the idea of putting up a wind turbine and making some electricity, and later adding some solar panels. This is the story of how I did it. Not with an expensive, store-bought turbine, but with a home-built one that cost hardly anything. If you have some fabricating skills and some electronic know-how, you can build one too.

Step 1: Acquiring a Generator

I started by Googling for information on home-built wind turbines. There are a lot of them out there in an amazing va­riety of designs and complexities. All of them had five things in common though:

  • A generator
  • Blades
  • A mounting that keeps it turned into the wind
  • A tower to get it up into the wind
  • Batteries and an electronic control system

I reduced the project to just five little systems. If attacked one at a time, the project didn't seem too terribly difficult. I decided to start with the generator. My online research showed that a lot of people were building their own generators. That seemed a bit too complicated, at least for a first effort. Others were using surplus permanent magnet DC motors as generators in their projects. This looked like a simpler way to go. So I began looking into what motors were best for the job. A lot of people seemed to like to use old computer tape drive motors (surplus relics from the days when computers had big reel to reel tape drives). The best apparently are a couple of models of motor made by Ametek. The best motor made by Ametek is a 99 volt DC motor that works great as a generator. Unfortunately, they are almost impossible to locate these days. There are a lot of other Ametek motors around though. A couple of their other models make decent generators and can still be found on places like eBay. I managed to score one of the good 30 volt Ametek motors off of eBay for only $26. They don't go that cheap these days. People are catching on to the fact that they make great wind generators. Other brands will work, so don't fret about the price Ameteks are going for. Shop wisely. Anyway, the motor I got was in good shape and worked great. Even just giving the shaft a quick turn with my fingers would light a 12 volt bulb quite brightly. I gave it a real test by chucking it up in my drill press and connecting it to a dummy load. It works great as a generator, putting out easily a couple hundred watts with this setup. I knew then that if I could make a decent set of blades to drive it, it would produce plenty of power.



Step 2: Making the Blades

Blades and a hub to connect them to were the next order of business. More online research ensued. A lot of people made their own blades by carving them out of wood. That looked like an outra­geous amount of work to me. I found that other people were making blades by cutting sections out of PVC pipe and shaping them into airfoils. That looked a lot more promising to me. I followed that general recipe. I did things a little differently though. I used black ABS pipe since my local home center store just happened to have pre-cut lengths of it. I used 6" pipe instead of 4" pipe and 24 inches instead of 19-5/8. I started by quartering a 24-inch piece of pipe around its circumference and cutting it lengthwise into four pieces. Then I cut out one blade, and used it as a template for cutting out the others. That left me with four blades (three plus one spare). I then did a little extra smoothing and shaping using my belt sander and palm sander on the cut edges to try to make them into better airfoils. I don't know if it's really much of an improvement, but it didn't seem to hurt, and the blades look really good (if I do say so myself).

Step 3: Building the Hub

Next I needed a hub to bolt the blades to and attach to the motor. Rummaging around in my workshop, I found a toothed pulley that fit on the motor shaft, but was a little too small in diameter to bolt the blades onto. I also found a scrap disk of aluminum 5 inches in diameter and 1/4" thick that I could bolt the blades onto, but wouldn't attach to the motor shaft. The simple solution of course was to bolt these two pieces together to make the hub. Much drilling, tapping, and bolting later, I had a hub.



Step 4: Building the Turbine Mounting

Next I needed a mounting for the turbine. Keeping it simple, I opted to just strap the motor to a piece of 2 X 4 wood. The correct length of the wood was computed by the highly scientific method of picking the best looking piece of scrap 2 3 4 off my scrap wood pile and going with however long it was. I also cut a piece of 4" diameter PVC pipe to make a shield to go over the motor and protect it from the weather. For a tail to keep it turned into the wind, I again just used a piece of heavy sheet aluminum I happened to have laying around. I was worried that it wouldn't be a big enough tail, but it seems to work just fine. The turbine snaps right around into the wind every time it changes direction. I have added a few dimensions to the picture. I doubt any of these measurements are critical though. Next, I had to begin thinking about some sort of tower and some sort of bearing that would allow the head to freely turn into the wind. I spent a lot of time in my local home center stores (Lowes and Home Depot) brainstorming. Finally, I came up with a solution that seems to work well. While brainstorming, I noticed that 1" diameter iron pipe is a good slip-fit inside 1-1/4" diameter steel EMT electrical conduit. I could use a long piece of 1-1/4" conduit as my tower and 1" pipe fittings at ei­ther end. For the head unit I attached a 1" iron floor flange centered 7-1/2 inch­es back from the generator end of the 2 X 4, and screwed a 10"-long iron pipe nipple into it. The nipple would slip into the top of the piece of conduit I'd use as a tower and form a nice bearing. Wires from the generator would pass through a hole drilled in the 2 X 4 down the cen­ter of the pipe/conduit unit and exit at the base of the tower.

Step 5: Build the Tower Base

For the tower base, I started by cutting a 2' diameter disk out of plywood. I made a U-shaped assembly out of 1" pipe fit­tings. In the middle of that assembly I put a 1 1/4" tee. The tee is free to turn around the 1" pipe and forms a hinge that allows me to raise and lower the tower. I then added a close nipple, a 1-1/4 to 1 reducing fitting, and a 12" nipple. Later I added a 1" tee between the re­ducer and the 12" nipple so there would be a place for the wires to exit the pipe. This is shown in a photo further down the page. I also later drilled holes in the wooden disk to allow me to use steel stakes to lock it in place on the ground. The second photo shows the head and base together. You can begin to see how it will go together. Imagine a 10' piece of steel conduit connecting the two pieces. Since I was building this thing in Florida, but was going to use it in Arizona, I de­cided to hold off on purchasing the 10' piece of conduit until I got to Arizona. That meant the wind turbine would not be fully assembled and would not get properly tested until I was ready to put it up in the field. That was a little scary because I wouldn't know if the thing ac­tually worked until I tried it in Arizona.

Step 6: Paint All the Wooden Parts

Next, I painted all the wooden parts with a couple of coats of white latex paint I had leftover from another project. I wanted to protect the wood from the weather. This photo also shows the lead counterweight I added to the left side of the 2 X 4 under the tail to balance the head.

Step 7: The Finished Head of the Wind Turbine

This photo shows the finished head unit with the blades attached. Is that a thing of beauty or what? It almost looks like I know what I'm doing. I never got a chance to properly test the unit before heading to Arizona. One windy day though, I did take the head outside and hold it high up in the air above my head into the wind just to see if the blades would spin as well as I had hoped. Spin they did. In a matter of a few seconds, the blades spun up to a truly scary speed (no load on the generator), and I found myself holding onto a giant, spinning, whirligig of death, with no idea how to put it down without getting myself chopped to bits. Fortunately, I did even­tually manage to turn it out of the wind and slow it down to a non-lethal speed. I won't make that mistake again.

Step 8: Build the Charge Controller

Now that I had all the mechanical parts sorted out, it was time to turn toward the electronic end of the project. A wind power system consists of the wind turbine, one or more batteries to store power produced by the turbine, a blocking diode to prevent power from the batteries being wasted spinning the motor/generator, a secondary load to dump power from the turbine into when the batteries are fully charged, and a charge controller to run everything. There are lots of controllers for solar and wind power systems. Anyplace that sells alternative energy stuff will have them. There are also always a lot of them for sale on eBay. I decided to try building my own though. So it was back to Googling for information on wind turbine charge controllers. I found a lot of information, including some complete schematics, which was quite nice and made building my own unit very easy. Again, while I fol­lowed a general recipe from an online source, I did do some things differently. Being an avid electronics tinkerer from an early age, I have a huge stock of elec­tronic components already on hand, so I had to buy very little to complete the controller. I substituted different compo­nents for some parts and reworked the circuit a little just so I could use parts I already had on hand. That way I had to buy almost nothing to build the control­ler. The only part I had to buy was the re­lay. I built my prototype charge control­ler by bolting all the pieces to a piece of plywood, as seen in the first photo be­low. I would rebuild it in a weatherproof enclosure later. Whether you build your own or buy one, you will need some sort of controller for your wind turbine. The general principal behind the con­troller is that it monitors the voltage of the battery(s) in your system, and either sends power from the turbine into the batteries to recharge them or dumps the power from the turbine into a secondary load if the batteries are fully charged (to prevent over-charging and destroying the batteries). In operation, the wind turbine is connected to the controller. Lines then run from the controller to the battery. All loads are taken directly from the battery. If the battery voltage drops below 11.9 volts, the controller switches the turbine power to charging the bat­tery. If the battery voltage rises to 14 volts, the controller switches to dumping the turbine power into the dummy load. There are trimpots to adjust the voltage levels at which the controller toggles back and forth between the two states. I chose 11.9V for the discharge point and 14V for the fully charged point based on advice from different web sites on the subject of properly charging lead acid batteries. The sites all recommended slightly different voltages. I sort of aver­aged them and came up with my num­bers. When the battery voltage is be­tween 11.9V and 14.8V, the system can be switched between either charging or dumping. A pair of push buttons allow me to switch between states anytime, for testing purposes. Normally the system runs automatically. When charging the battery, the yellow LED is lit. When the battery is charged and power is being dumped to the dummy load, the green LED is lit. This gives me some minimal feedback on what is going on with the system. I also use my multimeter to mea­sure both battery voltage and turbine output voltage. I will probably eventual­ly add either panel meters or automo­tive-style voltage and charge/discharge meters to the system. I'll do that once I have it in some sort of enclosure. I used my variable voltage bench power supply to simulate a battery in various states of charge and discharge to test and tune the controller. I could set the voltage of the power supply to 11.9V and set the trimpot for the low voltage trip point. Then I could crank the voltage up to 14V and set the trimpot for the high voltage trimpot. I had to get it set before I took it into the field because I'd have no way to tune it up out there. I have found out the hard way that it is important with this controller design to connect the battery first, and then connect the wind tur­bine and/or solar panels. If you connect the wind turbine first, the wild voltage swings coming from the turbine won't be smoothed out by the load of the battery, the controller will behave errati­cally, the relay will click away wildly, and voltage spikes could destroy the ICs. So always connect to the battery(s) first, and then connect the wind turbine. Also, make sure you disconnect the wind tur­bine first when taking the system apart. Disconnect the battery(s) last.

Step 9: Erect the Tower

At last, all parts of the project were com­plete. It was all done only a week before my vacation arrived. That was cutting it close. I disassembled the turbine and carefully packed the parts and the tools I'd need to assemble it for their trip across the country. Then I once again I drove out to my remote property in Arizona for a week of off-grid relaxation, but this time with hopes of having some actual electricity on the site. The first order of business was setting up and bracing the tower. After arriving at my property and unloading my van, I drove to the nearest Home Depot (about 60 miles one way) and bought the 10' piece of 1-1/4" conduit I needed for the tower. Once I had it, assembly went quickly. I used nylon rope to anchor the pole to four big wooden stakes driven in the ground. Turnbuckles on the lower ends of each guy-line allowed me to plumb up the tower. By releasing the line from either stake in line with the hinge at the base, I could raise and lower the tower easily. Eventually the nylon line and wooden stakes will be replaced with steel stakes and steel cables. For testing though, this arrangement worked fine. The second photo shows a close-up of how the guy-lines attach near the top of the tower. I used chain-link fence brack­ets as tie points for my guy-lines. The fence brackets don't quite clamp down tightly on the conduit, which is smaller in diameter than the fence posts they are normally used with. So there is a steel hose clamp at either end of the stack of brackets to keep them in place. The third photo shows the base of the tow­er, staked to the ground, with the wire from the wind turbine exiting from the tee below the conduit tower. I used an old orange extension cord with a broken plug to connect between the turbine and the controller. I simply cut both ends off and put on spade lugs. Threading the wire through the tower turned out to be easy. It was a cold morning and the cord was very stiff. I was able to just push it through the length of the conduit tower. On a warmer day I probably would have had to use a fish tape or string line to pull the cord through the conduit. I got lucky.

Step 10: Erect the Wind Turbine

The first photo shows the turbine head installed on top of the tower. I greased up the pipe on the bottom of the head and slid it into the top of the conduit. It made a great bearing, just as I'd planned. Sometimes I even amaze my­self. Too bad there was nobody around to get an Iwo Jima Flag Raising-type pic­ture of me raising the tower up with the head installed. The second photo shows the wind turbine fully assembled. Now I'm just waiting for the wind to blow. Wouldn't you know it, it was dead calm that morning. It was the first calm day I had ever seen out there. The wind had always been blowing every other time I had been there.

Step 11: Connect the Electronics

The first photo below shows the elec­tronics setup. The battery, inverter, me­ter, and prototype charge controller are all sitting on a plywood board on top of a blue plastic tub. I plug a long exten­sion cord into the inverter and run pow­er back to my campsite. Once the wind starts blowing, the turbine head snaps around into it and begins spinning up. It spins up quickly until the output volt­age exceeds the battery voltage plus the blocking diode drop (around 13.2 volts, depending on the state of the bat­tery charge). It is really running without a load until that point. Once that voltage is exceeded, the turbine suddenly has a load as it begins dumping power into the battery. Once under load, the RPMs only slightly increase as the wind speed in­creases. More wind means more current into the battery which means more load on the generator. So the system is pretty much self-governing. I saw no signs of over-revving. Of course, in storm-force winds, all bets are off. Switching the controller to dump power into the dum­my load did a good job of braking the turbine and slowing it way down even in stronger gusts. Actually shorting the turbine output is an even better brake. It brings the turbine to a halt even in strong winds. Shorting the output is how I made the turbine safe to raise and lower, so I wouldn't get sliced and diced by the spinning blades. Warning though, the whole head assembly can still swing around and crack you hard on the nog­gin if the wind changes direction while you are working on these things. So be careful out there.

 

Step 12: Enjoy Having Power in the Middle of Nowhere

How sweet it is! I have electricity! Here I have my laptop computer set up and plugged into the power provided by the inverter, which in turn is powered by the wind turbine. I normally only have about two hours of battery life on my laptop. So I don't get to use it much while I'm camping. It comes in handy though for downloading photos out of my camera when its memory card gets full, making notes on projects like this one, working on the next great American novel, or just watching DVD movies. Now I have no battery life problems, at least as long as the wind blows. Besides the laptop, I can also now recharge all my other battery powered equipment like my cell phone, my camera, my electric shaver, my air mattress pump, etc. Life used to get real primitive on previous camping trips when the batteries in all my electronic stuff ran down. I used the wind turbine to power my new popup trailer on a later vacation. The strong spring winds kept the wind turbine spinning all day every day and most of the nights too while I was in Arizona. The turbine provided enough power for the interior 12V light­ing and enough for 120V AC at the pow­er outlets to keep my battery charger, electric shaver, and mini vacuum cleaner (camping is messy) all charged up and running. My girlfriend complained about it not having enough power to run her hairdryer though.

Step 13: How Much Did It Cost?

So how much did all this cost to build? Well, I saved all the receipts for everything I bought related to this project.

Part

Origin

Cost

Motor/ generator

eBay

$26.00

 

 

 

Misc. pipe fittings

Home center Store

$41.49

 

 

 

Pipe for blades

Home center Store

$12.84

 

 

 

Misc hardware

Home center Store

$8.00

Conduit

Home center Store

$19.95

Wood and aluminum

Scrap Pile

$0.00

 

 

 

Power cable

Old exten­sion cord

$0.00

Rope and turnbuckles

Home center Store

$18.47

Electronic parts

Already on hand

$0.00

Relay

Auto Parts Store

$13.87

Battery

Borrowed from my UPS

$0.00

Inverter

Already on hand

$0.00

Paint

Already on hand

$0.00

Total

$140.62

 

 

Not too bad. I doubt I could buy a commercially made turbine with a comparable power output, plus a commercially made charge controller, plus a commercially made tower for less than $750-$1000

Step 14: Extras

I have completed the rebuild of the charge controller. It is now in a semi-weatherproof enclosure, and I have also added a built in voltage meter. Both were bought cheap on eBay. I have also added a few new features. The unit now has provisions for power inputs from multiple sources. It also has built-in fused 12V power distribution for three external loads.

The second photo shows the inside of the charge controller. I basically just transferred everything that I originally had bolted onto the plywood board in the prototype into this box. I added an automotive illuminated voltage gauge and fuses for three external 12V loads. I used heavy gauge wire to try to reduce losses due to wire resistance. Every watt counts when you are living off-grid.

The third image is the schematic for the new charge controller. It is pretty much the same as the old one above, except for the addition of the volt meter and extra fuse blocks for the external loads.

The photo directly below is a block diagram of the whole power system.

Note that I only have one solar panel built right now. I just haven't had the time to complete the second one.

Step 15: More Extras

Once again I stayed on my remote property during my recent vacation in Arizona. This time I had both my home-built wind turbine and my home-built solar panel with me. Working together, they provided plenty of power for my (admittedly minimal) electricity needs.

The second photo shows the new charge controller unit. The wires on the left side are coming from the wind turbine and solar panel. The wires on the right side are going to the bat­tery bank and dummy load. I cut up an old heavy-duty 100' extension cord to make cables to connect wind turbine and solar panel to the charge con­troller. The cable to the wind turbine is about 75 feet long and the cable to the solar panel is about 25 feet long. The battery bank I am currently using consists of eleven sealed lead-acid 12V batteries of 8 Amp-Hour capacity con­nected in parallel. That gives me 88 Amp-Hours of storage capacity, which is plenty for camping. As long as it is sunny and windy, (nearly every day is sunny and windy on my property), the wind turbine and solar panel keep the batteries well charged.

 

book cover

More from Do It Yourself Projects to Get You Off the Grid:


From Do It Yourself Projects to Get You Off the Grid by Instructables.com (Skyhorse Publishing, 2018) Copyright Skyhorse Publishing. All rights reserved. Used by permission of Skyhorse Publishing.

Projects to Get You Off the Grid

DIY Projects Off the Grid

In this inspiring book, readers can enjoy a focused series of projects designed to get you thinking creatively about going green. Do-It-Yourself Projects to Get You Off the Grid illustrates just how simple it can be to make your own backyard chicken coop, or turn a wine barrel into a rainwater collector. Including dozens of full-color photographs per project accompanying easy-to-follow instructions, this collection utilizes the best that the online community has to offer, turning a far-reaching group of people into a mammoth database churning out ideas to make life better, easier, and, in this case, greener, as this volume exemplifies. Order from the Mother Earth News Store or by calling 800-234-3368.




Subscribe Today - Pay Now & Save 64% Off the Cover Price

Money-Saving Tips in Every Issue!

Mother Earth NewsAt MOTHER EARTH NEWS, we are dedicated to conserving our planet's natural resources while helping you conserve your financial resources. You'll find tips for slashing heating bills, growing fresh, natural produce at home, and more. That's why we want you to save money and trees by subscribing through our earth-friendly automatic renewal savings plan. By paying with a credit card, you save an additional $5 and get 6 issues of MOTHER EARTH NEWS for only $12.95 (USA only).

You may also use the Bill Me option and pay $17.95 for 6 issues.

Canadian Subscribers - Click Here
International Subscribers - Click Here
Canadian subscriptions: 1 year (includes postage & GST).


Facebook Pinterest Instagram YouTube Twitter flipboard

Free Product Information Classifieds Newsletters

click me