The Future of Cutting Edge Solar Power

The future of cutting edge solar power is here to stay as we come closer to solving energy problems for the earth. The article includes information on new solar technology and solar energy and the government.


| December 1997/January 1998



165-040-01

Uni-Solar's 1.5 Kilowatt PV shire roofing system, used to power the University of Deaver's Meyer-Womble Observatory at the top of Mt. Evans in Colorado.


PHOTO: UNITED SOLAR SYSTEMS CORP.

How do we know the future of cutting edge solar power is here to stay? Amoco is producing PVs. 

"Technology that grew up in space can finally be brought down to earth."
—Frederico Peña
U.S. Secretary of Energy
 

As we get closer to fully employing the simple, abundant, and absolutely free energy from the star at the center of our planetary system acknowledging the future of cutting edge solar power, we get closer to becoming a civilized society. A leap to solar power would solve about a hundred earthly problems. In his recent speech to the United Nations Special Session on Environment and Development, President Clinton made his best point on the topic of solar energy by quoting John Muir: "When we try to pick anything out by itself, we find it hitched to everything else in the universe." PV (photovoltaic) energy produces no air pollution, hazardous waste, or noise, and requires no transportable fuels. Politically, it offers our nation freedom from being at the mercy of the Middle East and from the necessity of exploiting resources in our own nation's pristine natural areas, such as Utah. The only catch, of course, continues to be the cost.

Solar cells or panels have been used in space for many decades to power most satellites and shuttles, but the private sector has had very little access to this technology because of the high cost of materials (crystalline silicon technology) that convert sunlight into electricity. The latest quest in the development of solar technology has been to bring that cost down. One of the most successful ways to emerge recently is the use of thin films of silicon. The thinness allows easier absorption of light and can be coupled with less expensive materials. Several promising new products that use thin film are on the market. As Germany and Japan manufacture and market more solar technology, the U.S. is pumping money into R & D and sponsoring government initiatives to try to keep up with the competition. Some government attention is better than none, but other countries have provided much stronger incentives for manufacturers and for consumers. The most encouraging evidence that solar is here to stay, and will become more marketable and more cost effective, is that existing manufacturers of PV systems are expanding production and building new plants. Despite mergers of American and foreign companies and joint ventures with German and Japanese companies, America still has the competitive edge on developing, manufacturing, and marketing in this high tech industry. But will we keep it? With an entrenched electric utilities grid, will solar energy be only for export or will it be made available to us in our homes and businesses?

New Solar Energy Technology

Someday we'll see photos of giant upright metal panels on rooftops and beside buildings and we'll be amused at our early clunky efforts to capture sunlight and convert it into electricity. We have entered the age of the polymer. It's in everything from our airplanes to our sweatshirts, and now it's in some PV cells. Rather than adding-on solar panels, the trend is toward incorporating thin-film solar technology directly into the fabrication of building materials including roofs, shingles, windows, and siding. Thin-film photovoltaic modules are produced by applying extremely thin layers of light-sensitive semiconductor material to a low-cost backing.

Just about everybody from labs to universities is working on the thin-film technology. The race is on amongst the largest manufacturers of PVs to create the most efficient, thin, and flexible solar films. German-owned Siemens, the world's largest manufacturer of solar cells and modules based in Camarillo, California, has teamed up with the Department of Energy's National Renewable Energy Lab in Golden, Colorado to research the film. The National Renewable Energy Lab also signed a contract in August with Solarex of Frederick, Maryland to conduct further research on thin film photovoltaics. Solarex, a business unit of Amoco/Enron Solar, is the largest U.S.-owned manufacturer of photovoltaic modules. The technology uses half-mile long substrates in a roll-to-roll process for producing solar cells in a manner similar to the production of newsprint or photographic film.

mhoogesteger
1/22/2008 8:47:39 PM

Love your artical on thin film, but too general. We need specifics, names addresses, emails, where to buy. Give the man meat not mush.






Crowd at Seven Springs MOTHER EARTH NEWS FAIR

MOTHER EARTH NEWS FAIR

Sept. 15-17, 2017
Seven Springs, PA.

With more than 150 workshops, there is no shortage of informative demonstrations and lectures to educate and entertain you over the weekend.

LEARN MORE