The Crucial Role of Predators: A New Perspective on Ecology

Scientists have recently begun to understand the vital role played by top predators in ecosystems and the profound impacts that occur when those predators are wiped out. Now, researchers are citing new evidence that shows the importance of lions, wolves, sharks, and other creatures at the top of the food chain.


| November 15, 2011



standing wolf 2

 The return of wolves to Yellowstone proved that damage to a terrestrial food web could be restored.


FOTOLIA

Found in the North Palace at Ninevah, stone panels depicting the Royal Lion Hunt of the last Assyrian king, Ashurbanipal, are as violent as any video game: A female lion flies upside down, arrows protruding from her back and belly. Beneath her, a male rears back, arrows piercing his nasal passages while another male drags his hindquarters behind him. From the king’s chariot, attendants drive spears through the chest of another.

The panels are two-and-a-half thousand years old, and the story they tell is nearly over. In Africa, the lion’s numbers have declined sharply in the past decade, to as low as 23,000. The tiger is near extinction. Earlier this year, a mountain lion walked 1,800 miles from the Black Hills of South Dakota to the East Coast — one of the world’s longest recorded journey by a land mammal — only to be killed by a sport utility vehicle near Milford, Connecticut, 50 miles from New York City.

Just as the world’s lions, tigers, and bears are disappearing worldwide, a scientific consensus is emerging that they are critical to ecosystem function, exerting control over smaller predators, prey, and the plant world. Studies  of predation — a so-called “top-down” force in nature — have always run a weak second to ecology’s traditional focus, which holds that the foundation of life springs from bottom-up processes enabled by plants capturing energy from the sun. While no one disputes the importance of photosynthesis and nutrient cycling, experts on predation have become increasingly convinced that ecosystems are ruled from the top.Beginning with aquatic experiments, they have amassed considerable evidence of damage done to food chains by predator removal and have extended such studies to land: Predation may be as consequential, if not more so, than bottom-up forces. With a comprehensive new book (Trophic Cascades) and a major Science review published this summer, these specialists present the case that our persecution of predators menaces the marine and terrestrial ecosystems that produce food, hold human and zoonotic diseases in abeyance, and stabilize climate.

Using such terms as “deep anxiety” and “grave concern” to signal their alarm, the authors contend that the loss of large animals, and apex predators in particular, constitutes humanity’s “most pervasive influence” on the environment. It amounts, they argue, to a “global decapitation” of the systems that support life on Earth.

These are hardly new ideas: Both publications catalogue decades of work examining the power of predators. Charles Elton, an Oxford ecologist, first conceptualized food webs in the 1920s, speculating that wolf removal would unleash hordes of deer, a notion that weighed on Aldo Leopold’s mind as he compared the consequences of wolf-extirpation in German forests to still-thriving, intact systems in Mexico’s Sierra Madre Mountains. 

These insights gave rise to the 1960s “green world” hypothesis, which held that plants prevail because predators hold herbivores in check. Profound food chain effects — caused by adding or removing top species — are now known as “trophic cascades.” In a classic 1966 experiment, biologist Robert Paine removed the purple seastar, Pisaster ochraceus — a voracious mussel-feeder — from an area of coastline in Washington state. Their predator gone, mussels sprouted like corn in Kansas, crowding out algae, chitons, and limpets, replacing biodiversity with monoculture.

Corroborating evidence multiplied. Less than a decade after Pisaster, marine ecologists James Estes and John Palmisano reached the astonishing and widely reported conclusion that hunting of sea otters had caused the collapse of kelp forests around the Aleutian Islands. While the cat was away, the prey (sea urchins) stripped the larder bare. When otters returned, they regulated urchins, allowing “luxuriant” regrowth of biodiverse kelp communities. Around islands farther out to sea, where the mammals had not reestablished themselves, “urchin barrens” remained.





Crowd at Seven Springs MOTHER EARTH NEWS FAIR

MOTHER EARTH NEWS FAIR

Sept. 15-17, 2017
Seven Springs, PA.

With more than 150 workshops, there is no shortage of informative demonstrations and lectures to educate and entertain you over the weekend.

LEARN MORE