Fracking Chemicals in Our Food Supply

How gas drilling is threatening small farms by contaminating livestock and crops with fracking chemicals.


| October 2014



Gas drill in a field

Unlike other heavy industry, gas drilling facilities and fracking chemicals can be found in cornfields or near sources of water for cattle and people.


Photo by Fotolia/bizoo_n

The Real Cost of Fracking, by Michelle Bamberger and Robert Oswald (Beacon Press, 2014), pulls back the curtain on how fracking chemicals endanger the environment and harm people, pets and livestock. The following excerpt from Chapter 5, “Fracking, Farming, and Our Food Supply,” examines how local farms are being affected by nearby gas drilling operations.

Sometimes, when we go to the grocery store, we see produce, meat, fish, or dairy products labeled as “local,” with or without the name of the individual farm on the label. But in the vast majority of cases, we really don’t know where the products were produced—all we know is that they originated on a farm. If we don’t know where they came from, how can we be sure our food and water are safe, given that the food could have been produced—or in the case of water, collected—in an area undergoing intensive drilling operations? On the one hand, gas drilling is similar to other heavy industry in that it has the potential to pollute air and water. However, a factory is typically not located in the middle of a cornfield or within a few feet of a pond that is the source of water for a beef cattle herd or a spring that provides drinking water for a community. But gas wells, compressor stations, processing plants, condensate tanks, and wastewater impoundments are intermingled with food production. We have seen condensate tanks venting volatile organics in a corn field, a wastewater impoundment adjacent to a field of squash, cows grazing near drilling rigs, and deer walking across drilling pads. The only honest answer to the question of whether our food and water are safe from this process is that we really don’t know.

In cases of illegal dumping or leakage, the effects are catastrophic and the crops are not viable. In a large cornfield with a condensate tank at one edge, the risk may be minimal outside a small radius around the tank, but the same might not be said for a large processing facility that releases massive quantities of toxic substances into the air. Another potential for food contamination comes from practices known euphemistically as land farming, land treatment, and land spreading—the disposal of drilling waste (drill cuttings, muds, or fluids) or wastewater on farmland that depends on soil microbes to degrade the hydrocarbons. Land farming involves multiple applications of drilling waste or wastewater to farmland, whereas land spreading and land treatment refer to a onetime application. In addition to the many types of toxic chemicals that are released from the shale during drilling and hydraulic fracturing, both drilling waste and wastewater contain radioactive compounds, mostly in the form of radium-226 and radium-228.While both are hazardous substances, radium-226 is of particular concern because it can remain in the environment for thousands of years (its half-life is approximately sixteen hundred years). The states and countries allowing land farming, land treatment, and land spreading have different regulations, and the impact on agriculture has not been extensively studied. In lieu of definitive answers, some producers are rejecting milk from dairies engaged inland farming because of the high cost of testing for contaminants.

With crops raised for human or animal consumption, if the effects do not kill the plants or significantly stunt their growth, then we may never know the impact on our food supply. Currently, you’re unlikely to find grocery-store vegetables that have been significantly contaminated due to gas drilling, if for no other reason than the vast areas of production relative to the current footprint of gas drilling in most regions of the nation. But we have visited parts of Bradford and Washington Counties in Pennsylvania that are being intensively drilled; in some cases, the footprint of drilling approaches that of farmland. Consequently, the possible effects on farmland can only grow because the number of wells drilled as of 2013 was only a small fraction of the wells planned, even in areas that are in the middle of the shale gas boom like the one in Pennsylvania. By some estimates, up to 10 percent of US land is leased for drilling, exceeding the land mass used for growing corn and wheat.

But we may never know the effects of drilling on vegetable crops, since these foods are almost never tested for chemical contaminants. In fact it is not generally in the farmer’s interest to test for chemical contamination. For example, since arsenic was detected in rice products in California, some producers have been admirably open and honest about the contamination and their attempts to solve the problems. Lundberg Farms, for instance, has tested for, and published the levels of, arsenic in its rice. However, the full extent of the problem is not clear. As industrial processes such as oil and gas drilling begin to take up more and more land adjacent to acres in production, more consideration must be given to the testing of these crops.

Fracking Chemicals and Livestock

If we consider food animals, the picture changes, but not by much. Cattle can be exposed through surface spills of fracturing and drilling fluids, and wastewater, and also by contaminated water, soil, and feed. But air exposure can also be a problem, especially in farms located downwind of wastewater impoundments, condensate tanks, compressor stations, and processing plants. Air exposure may even be the leading pathway in areas such as North Dakota, where oil is being extracted unconventionally and where the gas, uncollected, is either flared or vented. A particularly well-documented case of the death of two baby goats and six baby chicks on an organic goat farm illustrates the acute problems that may occur. In this case, extensive air testing demonstrated elevated levels of a range of volatile organic compounds. In the case of beef herds, the animals typically go to slaughter with no chemical testing. Even testing for E. coli in ground meat is typically done after meat from many sources is mixed, making it impossible to track the source of contamination. In dairy herds, the milk is collected and mixed with milk from many other farms—also a practice that confounds the ability to isolate the source of a potential problem.

aggreen
11/3/2014 10:49:07 AM

***LOL! Most of the chemicals used in fracking are also in much of the prepared foods at the supermarkets. In my area of northeast PA, fracking has proved safe and harmless to, the environment. In fact, there are at least 5 producing wells within a 1 square mile radius of my house. All is calm and all is well.


mtaylor794
11/3/2014 8:59:58 AM

Worst article I've ever seen Mother Earth present. While not a blatant attempt to promote big oil it was close. "Just wait and see if the livestock dies off",,, really!!! Why don't we just wait and see if we, the humans, die off. I get that testing is difficult but figure it out already. Waiting around is not the answer. My question if why does big oil have to use such dangerous chemistry to fracture rock? It's obvious and unfortunate that there is no stopping this freight train. But couldn't they use something that doesn't kill every thing and every body or at least, doesn't last 1600 yrs? You know when they use the J O B S word to justify their crimes we're in trouble. Just like when they used the K I D S word to justify gambling. Guess what our education system still SUCKS. What happened to that pipe dream?






dairy goat

MOTHER EARTH NEWS FAIR

Aug. 5-6, 2017
Albany, Ore.

Discover a dazzling array of workshops and lectures designed to get you further down the path to independence and self-reliance.

LEARN MORE