Ecological Research After Nuclear War

Read about the nuclear affects on the environment after an event of nuclear war.

| November/December 1983

Researchers of the Ecological Science from Nuclear War

Here are researchers who found out how our environment would react after the event of a nuclear war.


Paul Ehrlich (Bing Professor of Population Studies and Professor of Biological Sciences, Stanford University) and Anne Ehrlich (Senior Research Associate, Department of Biological Sciences, Stanford) are familiar names to ecologists and environmentalists everywhere. But while most folks are aware of the Ehrlichs' popular writing in the areas of ecology and overpopulation (most of us — for instance — have read Paul's book The Population Bomb), few people have any idea of how deeply the Ehrlichs are involved in ecological research (the type that tends to be published only in technical journals and college texts). That's why we're pleased to present this regular semi technical column by these well-known authors/ ecologists/educators.

Recent studies indicate that our previous evaluation of the ecological impact of nuclear war (in MOTHER EARTH NEWS NO. 71) was probably much too optimistic! Put simply, the potential effects of the production of huge amounts of smoke and dust (resulting from a nuclear attack), upon which we speculated in our earlier column, have now been subjected to the scrutiny of atmospheric scientists. And the results of that research are frightening.

The most thorough of these studies owes its inspiration, in part, to a catastrophe that occurred long before Homo sapiens arrived on the scene. About 65 million years ago, at the transition between the Cretaceous and Tertiary geological periods (it's called the K-T boundary), a number of groups of unspectacular microscopic marine creatures went extinct quite suddenly. Furthermore, the last of the dinosaurs accompanied them into oblivion.

The cause of the K-T extinctions — as well as the actual speed with which they took — place remains rather controversial. One recent hypothesis suggests that they were the consequence of a thick cloud of dust that was thrown into the atmosphere by the impact of a gigantic meteor. A good bit of interesting geological evidence supports this theory, too, and it — in turn — has stimulated scientific consideration of the potential climatic (and other) effects of suddenly introducing massive amounts of particulate matter into the atmosphere.

A Complicated System

Of course, evaluating the effects of such a hypothetical event is far from simple, partly because the workings of the atmosphere are not yet completely understood. In particular, predicting the results of relatively minor atmospheric changes is often impossible. However, the effects of major changes can sometimes be more readily calculated (for example, the primary differences between winter and summer are easily forecast).

Today, projections produced by computers are made with models that are very simplified, compared with actual weather systems, and carry uncertainties about the effects of even large-scale disturbances. Nonetheless, such projections can provide valuable insights into the climatic results of atmospheric changes.

dairy goat


Aug. 5-6, 2017
Albany, Ore.

Discover a dazzling array of workshops and lectures designed to get you further down the path to independence and self-reliance.